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A statistical theory of streams of systems of the gas + suspended particles ty 
sed. The theory is based on the assumption that the particle concentration R 

e is propo- 
uctuations 

are isotropic. The structure of the equilibrium states is considered in a gradientless 
approximation; the mean-square values of the pulsations of the dynamic quantities and 
the transfer coefficients are estimated; the size of the local inhomo eneities is deter- 
mined. Equations for the energy of the pulsations of the dispersed p f . ase in various 
directions are obtained; an energy equation complementing the system of dynamic 
equations given in [*I is derived. 

The statistical characteristics of random 
suspension sneam can be found by solving Jr 

ulsating motions of the phases in a gas 
e system of integrodifferential spectral 

equations obtained in 1’1. This system is quite complicated. It is therefore expedient 
to make use of some simplifying hypotheses; this makes it possible to reduce the sto- 
chastic equations of 1’1 to the equations of 1.11. 

1, The pultatfon equatfonr. Let us consider the motion of a monodis 
gas suspension under the’assumption that the time and space scales of variation of t g 

erse 
e 

mean parameters describing the flow (of the 
red with the scales of the local pulsations. 

“dynamic quantities”) are lar e as compa- 
This enables.us, amon! other &ngs, to 

carry out our computations in a coordinate system m whrch the ve ocrty of the dispersed 
phase in the volume element under consideration is equal to zero. 

Let us make use of the most “fine-grained” description of the pulsations of dynamic 
quantities permitted by the notion of phases as interacting interpenetrating continuous 
media, i. e, let us choose as our characteristic physical volume (the “averaging scale” 
in the terminology of [l],the specific volume 0 
In accordance with the above assum 

= la of a single suspended particle[l,s]_ 

quantities with res ect to time and 51 
tion we neglect the derivatives of the dynamic 

derivatives of the !l 
e coordinates as compared with the corresponding 

uctuations of these quantities, This a 
K. . 

proximation is analogous in 
meaning to the familiar hydrodynamic approximation of metrc theory 121.We then 
have the following equations for the pulsations of the mean parameters (the notation is 
that of I’] 
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The tensor U; describes the stresses due to the action on the pulsation under considec- 
ation of perturbations whose scale is smaller than,J. The effective viscosity produced by 
such pectucbgtions can be assumed to be quite smSl1, which allows us to omit the term 
containing uI in (1.1). This is equivalent h 
pulsations in question to the “quivecings” fd: 

sically to the transfer of energy from the 
0 

individual specific volumes. 
e particles and gas within the limits of 

The normal stce.ss tensor n’ is not necessarily spherical in the general case (see the 
discussion in VI). The use of a s 
trument approximations subsume x 

ecifically spherical tensor JT’ icr?lis due to the ins- 
by the hypothesis adopted in [‘I , whereby it is poss- 

ible to describe explicitly the perturbations of acbitiacily small scale within the context 
of the unified equations of continuous media. 

The quantities Q and F in.the right sides of Eqs. (1.1) ace random functions; the time 
scale T of their essential variation is much smaller than the scale of decav T of the 
correlation functions. Hence, in anal zing processes occurring in the timd t >r (but 
t (( Tot 1 Z T) these quantities can l! e considered as Mackovlan random functions of 

time; This fact also makes Dossible a stricter iustification of the method of 1’1. In 
fact, by averaging Eqs. (1. i) over time intervals t > T, we arrive directly at equations 
of the same ty 
fluctuation P 

e as in[al,which enable us to describe the regular degeneration of the 
fie d by solving a certain problem under initial conditions. 

As is noted in [l],the quantities ,T and ,T ace similar in meaning to the internal and 
external time scales of turbulence of a monophase fluid which were introduced in iSI. 

equation). 
Neglecting u’t, we obtain from (1.1) the following equation for Xi (from now on we 

omit the subscript I ): 

-(l-&g 

Expressing ?s’as the sum no’1 -j- (xl’, where 1 is a unit tensor, 
mmetcy considerations, and retaining the isotco 

ap 
s 
x J: 

ic term in the rig K 
lying self-evident 
t side of (1.2) in 

e equation for Jt,.’ 
for z,‘, 

and the anisotcopic term in e right side of (1.2) in the equation 
we obtain the following expression for V?sl’ : 

Making use of (1.3) and carrying out some transformations of (1.1). we obtain 
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In accordance with (1.1) and (1.2), the equations for Jr,‘, W’ and v’ are of the form 

In dealin with this problem we are interested only in the quasiturbulent motions 
occasioned % y the interaction of the carrier current and gravitational forces on the one 
hand, and the fluctuations of the system concentration on the other, and not in the 
ordinary turbulent motions of the phases. For this reason we need merely investi ate 
the particular “natural” solution of s t i 
sence of the random functions Q. an dy 

stem (1.4), (1.5) which is determined by 
F in the right sides of the equations. 

e pre- 

Let us compare the distinct terms in the right side of Eq. (1.4). The last term is cle- 
arly of the same order as the quantity z-1 Q(P), i.e. in the limiting case z --t 0 it is 
considerably larger than the first two terms (we assume that the mean-square values of 
the random functions Q, Ft,are of the same order in ‘c). From this we infer that in 
our “Markovian” approximation we need only take account of the terms containing the 
function Q(P), neglecting the terms containing F and Q(g). It is clear, moreover, that 
Q(P) descrrbes precisely that statistical noise (white with respect to time) which was 
introduced in 12]on the basis of intuitive physical considerations. 

Let us introduce the notions of random processes in the form of Fourier-Stieltjes sto- 
chastic integrals. We then obtain from (1.4) the following equation for the random 
measure a, of the process f-r ’ : 

dz, = (io* i_ b,o + b,)-’ dC, b2 =Wk (1.6) 

Here the quantity dc represents the random measure of the recess which is Marko- 
vian with respect to time. We note that (1.6) coincides with t! 
I21 as the phase density ratio X 

e analogous equation of 

Again neglecting the quantities F(i) and F(p), we obtain from (1.5) the follo- 
wing expressions for the random processes Jr,‘, V' and w’ : 

dZ,,, = ipbl -$ dZ,,, dZ, =&$ ++)dz, 

dZ, = ’ 
P (io + 00) ( 

W+pblg)d&, 00 = +j$ 
(1.7) 

These expressions are also equivalent to the expressions of [#I: The pulsation of the 
dispersion medium is secondary in the sense that its appearance is itself due to the 
necessity of mass conservation in the chaotic particle motions and to the resulting 
fluctuations of particle concentrations in the system (see the discussion in .[a)). It is 
abo quite simple to write out an expression for the quantity k&,,, which is a conse- 
quence of (1.3). 

We note that the same results are readily obtainable for a particle suspension in a 
liquid, i. e. when one cannot neglect momentum and viscous energy dissipation in the 
dispersion medium. The method of [‘Icombined with the ideas employed above also 
yields the equations written out in Is] in this case. 

Further on we shall carry out several sample corn urations for one-dimensional 
gradientless steady flow. The dynamic equations o P 
such flow: 

[t] yield the following relations for 

dn B dn 
dr=g~=PB* u,_v 9 (1.8) 

These relations enable us to describe such flows by specifying a single dynamic quantity. 
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2. The 8tructurC of equilibrium states. According to iaj,the spect- 
ral density Y,,, (0, k) of the random process p can be expressed by means of (1.6) in 
terms of the spectral density CD,*, (k) of this process which describes the simultaneous 
correlation functions only. The position of an individual particle in the model under 
co~ideration is defined to within its specific volume. Allowance for this indetermina- 
cy by means of the ~assignon procedure for smoo~ing out short-wave spectral details 
enabled us i6] to obtain an expression for QI>,,f (li) in a system of statistically indepen- 
dent particles. As we noted in fs] f it is possible to use some equivalent method rather 
than that of Massig~on. Specifically, by using the simplest spectrum smoothing proce- 
dure based on thefamiliar ideas of Debye, we arrive in the same way at the relations 

PI 

Here Y (g) is Heaviside’s function, P * is the concentration of the gas suspension in 
the dense packing state, and the quantity ko is simply related to the dimension of the 
independent statistical unit in the system. In a system of statistically independent par- 
ticles the role of this unit is played by the particle with its specific volume, so that. 

The hypothesis of statistical independence is not adequate in the 
approximate criterion of appearance of large-scale perturbations an 8 

eneral case (an 
transition to an 

inhomogeneous flow state is formulated in Is]). The existence of correlations between 
the behavior of neighboring particles clearly results in this case in an increase of the 
independent statistical unit in the stream, so that kD in (2.1) turns out to be smaller 
than the quantity k oD in (2.2). For this reason we shall be considering &as some 
function of the dynamic quantities and physical parameters of the phases. 

Roughly speaking, the use of Formula (2. I) for ks < k, corresponds to the notion of 
a gas s~pension as a system consisting of groups of particles whose behavior within a 
sin 
cal y independent. The quantity 5,. which is related to & as b is to k&in (2.2) then f 

le group is completely correlated, even ~ougb the groups themselves are stathti- 

represents-the radius of the voiurndbccupied by such a grou and therefore determines 
both the scale of loner-range interaction in the system and R t e scale of the resulting 
~nhomo~eneities. Wg are ‘Teferring, of course, io the structural inhomo eneities die to 
the statrstical pro 

P 
erties of local interactions in the system, and not to & e perturbations 

which can result rom a disruption of the hydrodynamic stability of the stream. 
We note that to within constant factors of order unity the same results (2. I) and (2.2) 

can be arrived at by means of a more conventional argument based on equating the 
number of harmonics in the Fourier transforms of the random processes to the number of 
degrees of freedom of the particles in the volume element under consideration. From 
this standpoint the appearance of correlations between particles is equivalent to a 
reduction of the number of degrees of freedom in the system. 

It is also possible in theory to use a phenomenological approach analogous to the 
well-known Ornstein-Zernike method in the theory of critical fluctuations of dense 
gases (e.g. see f”]), i. e. to use some rational functional relation for Q,,,(k), which 
contains one or several em For comparison, we shall later make 
use of a spectral density o P 

irical parameters. 
this 

Q, (5) of the process P’> i.e. 
type associated with the Gaussian correlation function 
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The parameter k, has the same meanin 
Part of the pulsation energy is dissipate P 

in (2.3) as in (2.1). 

bations in question to the small-scale 
as a result of energy transfer from the pertur- 

“quiverin 
specific volumes, Tbis transfer occurs by way o $ 

” of particles within the limits of their 

If the flow ir inhomogeneous, 
direct and indirect particle collisions(~~. 

i. e. if the pulsation scaies are small as compared 
with the specific-volume radius, then the effect of the small-scale “quiverings” can be 
described by introducing the effective viscosity occasioned by them. Assuming that the 
motions occurring within the limits of the s 
and denoting the aforementioned viscosity y Y,, % 

ecific volumes are a proximately isotro ic 
we obtain the ollowing equation P P or 

the energy dissipation due to the small-scale motions: 

Relation (2.4) differs from the expression of Ib] in that the former retains the terms 
associated with the “corn ressibility” of the dispersed base, i.e. in the fact that the 
diver ence of i’diffea 

-s 
K om zero. The notion that 4 e particle pulsations within the 

specs rc volumes are Isotropic is in a certain sense analogous to the hypo~~is of local 
isotropy in turbulence theory and is confirmed by direct observations (e, g. see [‘I). We 
note, incidentally, that our conclusion concerning the isotropic character of the part ial 
spectral density Q;t,,@ {k) is consistent with the well-known results whereby the three- 
dimensional correlations of gas density do not depend in the first approximation on the 
intensity of the generalized thermodynam ic forces 16]. 

Clearly, the quantity E, must equal the energy dissipation occurring b way of the 
small-scale “quiverings” as a result of viscous interaction with the gas. 
quantity we use, as in I6 f ,an exnression which follows from the 

P or the latter 
theor 

motion, i.e. e, = 3 ~~~~~s~; where KX fp)’ is a function whit t: 
of Brownian 
corrects for the 

effect of boundedne~ of the specific volume on the viscous interaction force; it is an a- 
Iogous to the function iy (p) m (1.1). Generally speaking, K, @) # K tp). Equating 
our two expressions for tin, we obtain the equation 

This equation must be used in determining the parameter .ko in the expressions for 
Q,,,(k) of (2.1) or (2.3). 

The above results enable us to express all of the correlation functions which are of 
interest as quadratures in o and k. Actual integration involves difficulties occasioned 
by the complex form of the expression for YPeP fo, k) in (2.1). We shall consider 
below just one limiting case in which the integration is simpXified considerably, In the 
general case our results can be regarded as model results of a sort. 

The case of greatest interest is the inhomogeneous flow of a gas suspension which 
arises Ia} in the range of parameter values where 14 ) in (2.2) is larger than bss. In the 
limiting case bX* * i 4 1 in the main portion of the space of integration over I we 
find from (2.1) that 

The direction of the axis zs = t is me same as that of the vector W. 
In the opposite limiting case we have 
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Asymptotic form (2.6) is associated with an approximate solution of Eq.(2.5) of the 
form 

where we make use of @&) from (2.1). 
In carrying out the integration iri (2.5) we took account of only the largest anisotropic 

term in the expression for the spectral tensor pTw(,,&, k)of the process w’ana made use 
of the relation 

M __ 

S 1 - do 

s 

x 
al* + 00’ ==‘oowpkll 

-co ---co 

By usin rfl P.&c) from (2.3), we obtain a formula of the same type fork*,but with the 
numerica P coefficient 0.825 instead of 1.30. Hence, in the eneral case the indicated 
formula is valid only to within a factor of order unity. Specr ically, for a flow descri- -f 
bed by relations (1.8) we have the expressions 

k, = CC (P)u-‘g = CG, (p) k,, C y 1, k, = u,-“g, u. e g / fl 

c(p)=. 

From this we see that basic assumption (2.6) can be fulfilled either for sufficiency 
small P or for-P which are quite close to Pee In the general case Formula (2.8) yields 
the order of the true value of tw For example, in the opposite asymptotic case (2.7) 
we obtain from (2.5) the following expression for k, : 

ko = CG’ (p) u-ag, G’ (p) = f-P 
L1-0.80p+0.28p~(2.-p)(i -p)-I]“’ x 

(2.9) 

It is clear that the values of the function G’ (P) are of the same order as the values 
of I: (P) from (2.8) for almost all P’ . We note that c (P) and G’ (p) in (2.8) and (2.9) 
are weak1 dependent on the physical 
riables. ?li 1s is due to the analoeous enendence of the unction K Iol . for which we B 

arameters of the 
P 

hases and on the dynamic va- 

can take, for example, K(p) zyi - pj -n, where the parameter’_% &umes different 
values in the various ranges of variation of the dimensionless criteria describing the 
motion’lsl. 

Relations (2.8) and (2.9) are valid for k,< km, when introduction of the viscosity 
V,:, and therefore Eq, (2.5)) are valid. If the k, in (2.8) or (2.9) is larger or equal to 
the ks of (2.2), then we must take k,s k-m It is clear that disru 
ity of the gas sus P 

tion of the homogene- 
ension stream is facilitated for intermediate va ues of P from the in- 

terval (0,~~). TK e flow of any gas suspension characterized by an arbitrarily small k* 
from (2.8) becomes homogeneous as P-+ 0 and P-t P+ . The latter statement is quali- 

Recalling that ok* - A, where A. is the Archimedes number, we readily obtain this 
condition from (2,2) and (2.8) in a form similar to that of the approximate homogene- 
ity criterion in f’]. The criterion of the start of an inhomogeneous flow of a given par- 
ticle system in a given gas (i.e. for a fixed k,) for an arbitrary concentration P can be 
written as 

_ _ 

min {ko - k,) < 0 
P 
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Carrying out some simple transformations and recalling that min (P-“’ c) mi, we 
obtain this criterion in the form 

F = u* (ag)-’ 2 I (2.10) 

where P is the dimensionless Froude flow parameter. 
particulars with the empirical criterion of disru 

Inequality (2.10) coincides in all 
tion of homo 

established in [loI on the basis of a large body o P ! 
eneous quasifluidization 

experimenta data. 
Expressions (2.2) and (2.8) yield the following relation for the size b. of the flow in- 

homogeneities: 

F - 
c (P) Fo (2.11) 

This expression has the same structure as the formula for the diameter of a gas bubble 
in a suspended layer obtained in [*I by analyzing the stability of such a bubble. Its 
meaning is altogether different, however, In fact, (2.11) describes the size of the in- 
homogeneities whose appearance is due to the peculiarities of local interac tlons in the 
system; the formula of [*] ,on the other hand, describes the size of hydrodynamic per- 
turbations of a specific type. The coefficient in front of the Froude number Fp in (2.11) 
is proportional to CO” (pj and is usually much smaller than the coefficient in [*l, which 
varies from 200 to 11,000. This shows that large stable hydrodynamic perturbations can 

(z*,“) E (us,“) x 0.187 

+ (&)I (1 - 

Here the components u’i) are taken along the axes zr such that t’ = Z’J is directed 
along the vector u. It is clear that the axes LI and zi’ are not necessarily coincident. 

Specifically, we obtain the following expressions- from (2.12) for the pulsations in 
stream (1.8) with ko from (2.8): 

049.E <u*‘*) z V*(p) u*, 
(Wj’) = - <WI’*) S w, (p) u*, 

<y1’*> = V, (p) u* 

<w1'*> = w, (PI u’ 

.- Vl (P) = 2va (P) + (ep)* (i - 5) 

0.144p’ 
V*(P) = (1 _ P)‘” (+$$_..+Z?!!&Z)l(LL)* 

(2.13) 

Wl (P) = WI (P) + ,i3$S,, (i-CT(&+ ?>I($ 

w, (&)) ~ o.5Q2P’ 
(1 _.p)‘” 

(L_._#$L+d+)‘(+~ 

The ratios 
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<VP”9 <wa’V 
-c__ *II - (vl,‘q ’ *lo= qipy 

which can be readily determined from (2.12) and (2.13). are usually important flow 
characteristics. The quantity N, is considerably smaller than unity; the quantity NW 
turns out to be quite close to 0.5 for certain p . Comparison of the theoretical values 
of WI’s> and NW with the experimental data of.]rapu indicated~~~~e~~~~~~~~~~~ 
pite the clearly approximate character of relations (2.13). The 
also qualitatively consistent with other experimental findings on the pulsations of the 
phases in quasifluidized systems. 

As p approaches zero or p+ , the quantity ko from (2.8) is replaced by k, from 
(2.2)) no matter how small the quantity k, in (2.8). The corresponding expressions for 
the mean squares of the pulsations are also readily obtainable from (2.12). It can be 
shown that condition (2.6) is fulfilled in the range p - or and condition (2.7) in the 
range P -0. As p+ pr we have the estimates 

<v,“> - <w,“) - 1 - p / p* (2.14) 

The same method can be used to find expressions for <VA ‘s) and (w,‘~> corresponding 
to asymptotic form (2.7). and also to write out integral expressions for various correla- 
tion functions and to carry out the integrations in them for various specific cases. 

The tensor of the dispersed-phase pressure introduced in (11 is diagonal in our coordi- 
nate system. Neglecting the volume occupied by the particles themselves, we obtain 
the equations 

Pll P pd,(w,'% Pa, = Pa, = pddwa’=>, Pij = 0, i # i (2.15) 
. 

These relations correspond to pure quasiturbulent motion r]! In order to allow for the 
increasing role of direct interactions between particles with increasin 

K 
system concen- 

tration, we introduced in 12] the notion of a quasigaseous state; the ef ective normal 
stresses and the transfer coefficients in the dispersed phase in this state were estimated 
on the basis of Enskog’s results for a dense rigid-sphere gas [r’]. 

In fact, our notions of the direct collisions of gases similar in ty e to the collisions 
of gas molecules are in large measure arbitrary even in the case o P concentrated lar e- 

I- particle suspensions; this was noted, for exam le in [6,7]. There are, generally spea mg, 
no grounds to su 

P 
pose that Enskog’s relations B . 

system with suf rcient accuracy. 
escrrbe transfer processes in a disperse 

It is equally doubtful whether Boltzmann-type equa- 
tions are at all applicable to such systems [aP]. In the discussion to follow we shall make 
allowance for the intrinsic volume of the particles by means of an elementary “geomet- 
ric” method already used with gases,[r$ 

The normal smesses ZJil m the dispersed phase are equal to me velocities of transfer 
of the momentum density of this 

P 
hase in the i - th directions. 

tum transfer in the free volume o 
The velocity of momen- 

velocity (wflr)‘f* - wr 
the particles is clearly equal to the particle pulsation 

*. The velocity c of momentum propagation in the particle mat- 
erial is approximately equal to the velocity of sound, i. e. it is much larger than WI*. 
The time lL(‘)required for the momentum to navel the distance L in the i-th direction 
is given by 

tL(i) 
a% _ d 

za 
& 

(2.16) 

Here U* is the specific volume of a particle in the dense packing state, so that 
U - o,is the free volume of the gas suspension per particle. Expression (2.16) 

readily yields an expression for the mean velocity of momentum propagation. The 
usual procedure [t&l can then be used to find an expression for p,, to replace (2.15). 
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The effective particle diffusion coefficients in a quasiturbulent state can be expressed 
approximately as products of the corresponding velocities and spatial scales of the pulsa 
tions. These scales can be estimated in various ways (one of them is described in Is]). 
For simplicity, we shall limit ourselves here to the formal representations 

Dir = (wr’s)‘/a L, -. w,*b,, D,, s D,, I- wa*b, (2.18) 

The coefficients of momentum and pulsation energy transfer, pLrr and A,, , respecti- 
vely , can be expressed in terms of D,, , 

Here we have made allowance for the practically instantaneous momentum and energy 
transfer in the particle material. 

For p+ pe we obtain from (2.14) and (2.17) the estimates 

pit - (1 - TS) [(i - 7) + T I]_‘, 7’ = f 

If i - y 9 KJ~* / c,then Pit-t const as P* P&‘-t i). However, for p so close to p. 
that 1 -_r-<wit/c we have Pii -B 0. The range of p vilues’adjacent to pr for which the 
latter inequality is fulfilled will not be taken into account from now on. We then ob- 
tain the followmg estimates for Dtt and ,JQ from (2,14) and (2.18)) (2.19) as p+ p+ : 

Here we have taken account of the fact that near p. the quantity b0 m b from (2.2). 
It is easy to show that the quantities P[i and Di, considered as functions of !P usually 
have maxima, and that ‘/ill and Ai1 have both maxima and minima, as was already 
noted in (‘1. 

3. The energy equr tiOn8, The level of development of phase pulsations 
is determined by the balance existing between the energ expended by the carrier 
current and gravitational field on the acceleration of in d: 
(packets) consisting of more than one particle, 

ividual particles and aggregates 

through viscous particle-gas interactions (9. 
and the dissipation of the pulsatron ener- 

gy 

Neg1ectin$ . 
the gas pulsation energy, we obtain from the second and third equations 

of (1.5) the ollowmg balance equation for the quantities (10,‘~) (without summation 
over Ii ): 

(3.1) 

w= 0 

The first term in me right side of (2.4) describes the work performed by the averaged 

$l 
as flux and gravitational forces in the fluctuations of the gas suspension concentration; 
e second term represents the work expended by the gas pulsations in the random par- 

ticle displacements; the third term represents the dissipation of particle pulsation energy 
by way of the viscous forces. 

Equations (3.1) do not contain terms associated with the irreversible pulsation energy 
transfer processes (cf. [Is]), i.e. terms representing increases in the pulsation energy 

3 Having neglected the tensor u; in Eqs. (1.1). we neglect the small quantity e, 
discussed in detail in Sect, 2. 
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due to the dissipation of the kinetic energy of the averaged motion and the divergence 
of the 
From K t 

ulsation energy flux due to the transfer of the latter by the pulsations themselves. 
e familiar prmciples of irreversible process thermodynamics we obtain the follo- 

wing expression for the latter flux: 

Qi = -+(A ;)(!I, + (m(‘.“$)ej, 6,= (w{~), i#i (3.2) 

Here o,is the doubled kinetic energy of pulsation of a unit mass of the dispersed 
phase in the i- th direction (the “effective temperature in the i-th direction”); A 
is the symmetric tensor of transfer coefficients which coincides with the tensor A”of 
(2.19) in the steady (“equilibrium”) state (all quantities referring to the equilibrium 
state will henceforth be accompanied by the degree symbol); m(t. j)are the cross co- 
efficient tensors symmetric in i, i. For simplicity, we shall ignore all cross effects 
from now on (by setting(mc{* j) E 0). 

The increase in pulsation energy due to the dissipation of the energy of averaged 
motion depends on the derivatives of the dynamic quantities with respect to the coor- 
dinates. The corresponding term ,must therefore be omitted in our gradientless approx- 
imation (see the discussion in [is] for the case of a single-phase fluid). 

Moreover, a system in a nonequilibrium state can be characterized by exchanges in 
pulsation energy among the motions in various directions. The characteristic time of 
such exchanges is clearly z ZZ~P In our asymptotic case t>‘~ this exchange must be 
neglected, since we are considering states which are “relaxed” in the pertinent sense. 

From (1.4) we can readily obtain the corresponding equation for (p ‘“) from which 
we see that the condition whereby (p’l).is bounded throughout the entire space implies 
that(p’2) = (p/l)’ = const. Hence, recalling what we said in Sect. 1 concerning 
the secondary character of the gas pulsations, we can write the estimates 

pR,(p’w;) + po(v,‘q’) - et*’ (3.3) 

The proportionality coefficient can be expressed in self-evident fashion in terms 9f 
the equilibrium temperature 8, “‘on the basis of the condition whereby 8, becomes 8,” 
in the equilibrium state. This way we obtain from (3.1) - (3.3) the following equations 
for the temperatures 8,: 

In order to determine these equations (as well as the dynamic equations of [‘]I) com- 
pletely , we must establish the dependence of the tensors A and F: on 8,. To this end 
we note that 1 ~c mr8, in (2.5); here m, are certain functions of &J , of the dyna- 
mic quantities, and of the physical parameters of the system phases. The expression for 
ka in terms of the tern 

P 
eratures 

form as the expression or k, 
8, in a nonequilibrium state is therefore of the same 

o in terms of 8,” in me equilibrium state. Expressions 
(2.18) and (2.19) further imply that $i.-, &Ln&%) (since 4, - 8sm) and an 
analogous expression for PI,, We can therefore write 

‘h koO (0i”) 
ko’ (‘W * 

% ko’ (Oi”) 
koO (%I (3.5) 

which defines the required tensors. The dependence of the normal stresses on the tem- 
perature is trivial: we have P,, = Pfio (O,/elQ). 

For example, for asymptotic case (2.6) we obtain successively 
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and similar expressions for p,s. 
We emphasize that the use of Eq. (2.5) to describe nonequilibrium states is equiva- 

lent to assuming that equilibrium for the small-scale “quiverings” is established much 
sooner than for the large-scale pulsations, 
flows of gas suspensions is self-evident. 

The validity of this assumption fdr steady 

The equations for the pulsation energy (3.4) and relations of the type (3.5), (3.6) 
which, in a sense, play the role of “equations of state”, close the system of dynamic 
equations of 1’). These Equations (3.4) have the same meaning as the heat conduction 
equation in single-phase fluid hydrod namics. 

After simple transformations, the ynamic equations of [i] yield the equation for the B 
energy of the averaged motion of a gas suspension in the form 

( ~+W~)~=_~~+w[g+o,p(v--)--(p”hpo”)] (3.7) 

l-I = (p&)"P, a0 = (pt.&)-‘$0 

(the notation here is that of 1’1 ). 
Addin (3.7) 

?l 
to the sum of Equations (3.4), we obtain an equation which closes the 

ordinary eat transfer equation [la]. Equation (3.7) can also be written in other forms. 
Equations (3.4) are especially interesting because of the fact that, together with the 

dynamic equations, they enable us to describe the interaction of a stream with solid 
walls and the de 
hood of a wall. %h 

eneration of pulsations (“cooling” of a gas suspension) in the neighbor- 
1s is exnemelv imnortant both for the formulation of correct boun- 

dary conditions at the walls, and’esp&ially for computing the coefficients of heat and 
mass transfer to the wall. The same equations enable us, to describe, for exam 
rise of chaotic pulsations along the hei 

s 
ht of the suspended layer, the effect o P 

le, the 
a 

distribution grating on the structure of 
gas 

e layer, etc. We note that in accordance with 
what we have said above, the presence of walls affects not on1 
the scale of the pulsations. This fact explains the 

the intensity, but also 

reasing distance from the distribution grating note 
omogeneities with inc- 

m many experiments. 
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We consider a s 
.J 

stem 
tic medium wi 

of equations describing the flows of an incompressible viscoelas- 
a rheological equation of state containing derivatives of the stress 

tensor with respect to time, The initial system of equations for two-constant models of 
the medium is a quasilinear first-order system. Correct formulation of the problem 
under initial conditions requires the imposition of certain restrictions on the system 
matrix llf. These restrictions, which are necessary to ensure the evolutionary charac- 
ter of the system, are imposed on the stress tensor in our case, We shall concentrate on 
one-dimensional motions for which the requirement of evolutionary character renders 
the system hyperbolic. It is then possible to indicate sufficient conditions which ensure 
the uniqueness of the continuous solution of the one-dimensional steadystate boundary 
value problem. 

Hyperbolic systems of equations of viscoelastic fluid dynamics have discontinuous 
solutions for certain models (e. g. that of Oldroyd PI ). Discontinuous flows of mater- 
ials with memory in which the stresses are functionals of their “strain history” are dis- 
cussed in ls]. We shall consider the discontinuities in Oldroyd’s model when the differ- 
ential relationship between the stress tensors and straining rates is given, A necessary 
condition for the existence of discontinuities is formulated. The problem of evolution 
of a velocity jump in one-dimensional motion is considered, 

1. The conditlonr of evolutionary character. Let a viscoelastic 
incompressible fluid move in a plane channel 0 < z ( 6 or in a half-space ‘Z > 0. 
We assume that all the parameters of motion except the pressure are functions of the 
sin 

8h 
le space coordinate z and of the time f. 

e equations of motion are in this case of the form 

~+v*E?.&z.gL_ :,py-F,=O 

at% * aT,z --_- 
01 p az 

-FF,=O 

Here P* (1) = - 6’~ / Bx and P, (t) = -o’p/@can be regarded as given functions. 
The last equation of (1.1) makes use of the incompressibility condition 


