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A statistical theory of streams of systems of the gas + suspended particles type is propo-
sed. The theory is based on the assumption that the particle concentration fluctuations
are isotropic. The structure of the equilibrium states is considered in a gradientless
approximation; the mean-square values of the pulsations of the dynamic quantities and
the ransfer coefficients are estimated; the size of the local inhomogeneities is deter-
mined. Equations for the energy of the pulsations of the dispersed phase in various
directions are obtained; an energy equation complementing the system of dynamic
equations given in ['] is derived.

The statistical characteristics of random pulsating motions of the phases in a gas
suspension stream can be found by solving Lﬁe system of integrodifferential spectral
equations obtained in [*]. This system is quite complicated. It is therefore expedient
to make use of some simplifying hypothéses; this makes it possible to reduce the sto=
chastic equations of {'1to the equations of [3].

1, The pulsation equations, Let us consider the motion of a monodisperse
gas suspension under th€ assumption that the time and space scales of variation of the
mean parameters describing the flow (of the "dynamic quantities") are large as compa=-
red with the scales of the local pulsations, This enables us, amonf other things, to
carry out our computations in a coordinate system in which the velocity of the dispersed
phase in the volume element under consideration is equal to zero,

Let us make use of the most "fine-grained” description of the pulsations of dynamic
quantities permitted by the notion of phases as interacting interpenetrating continuous
media, i,e, let us choose as our characteristic physical volume (the "averaging scale"
in the terminology of [!]the specific volume ¢ = I? of a single suspended particle[1,2],
In accordance with the above assumption we neglect the derivatives of the dynamic
quantities with respect to time and the coordinates as compared with the corresponding
derivatives of the fluctuations of these quantities. This aEproximation is analogous in
meaning to the familiar hydrodynamic approximation of kinetic theory [2].We then
have tfhe ]foll‘owing equations for the pulsations of the mean parameters (the notation is
that of |2
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The tensor O; describes the stresses due to the action on the pulsation under consider~
ation of perturbations whose scale is smaller than . The effective viscosity produced by
such perturbations can be assumed to be quite smdll, which allows us to omit the term
containing g, in(1.1). This is equivalent ¥hg;sically to the transfer of energy from the
pulsations in question to the "quiverings" of the particles and gas within the limits of
individual specific volumes.

The normal stress tensor =’ is not necessarily spherical in the general case (see the
discussion in [*]). The use of a specifically spherical tensor n’ in-{'] is due to the ins-
tument approximations subsumed by the hypothesis adopted in ['] , whereby it is poss-
ible to describe explicitly the perturbations of arbitrarily small scale within the context
of the unified equations of continuous media,

The quantities Q and F in.the right sides of Egs. (1.1) are random functions; the time
scale T of their essential variation is much smaller than the scale of decay T of the
correlation functions, Hence, in analyzing processes occurring in the time ¢ 2>t (but

t<£ Tor t = T) these quantities can be considered as Markovian random functions of
time. This fact also makes possible a stricter justification of the method of [?]. In
fact, by averaging Egs. (1.1) over time intervals ¢ S>> 1, we arrive directly at equations
of the same tyfe as in [*],which enable us to describe the regular degeneration of the
fluctation field by solving a certain problem under initial conditions.

As is noted in [}}, the quantities -7 and ‘T are similar in meaning to the internal and
external time scales of turbulence of a monophase fluid which were introduced in [*].
Moreover, the quantity ¥ can be regarded as the characteristic interaction time ¥; in
the statistical system underyconsideration, so that the assumption that the random quan=
titigs Q and F of (1.1) are Markovian is equivalent to the familiar as mptotic case
¢t 2> 7% in nonequilibrium statistical mechanics (e. g. see [4]). The relationship hetween
(1.1) and the corresponding averaged equations has the same significance as the relat-
ionship between the Liouville equation and the equations which result from it upon
approximation of the random phases (e.g. by a controlling equation or the Boltzmann
equation). ,

Neglecting 6’1, we obtain from (1.1) the following equation for %, (from now on we
omit the subscript ):

x'  BpK dp’ dx 1 dlnK dp’
—U =0 o5 =75 o I:_-(i_r_+’BK(1—p +P—a )“]'5:“

’ (i)
—Box S 4 B B g (1.2)

Expressing %’ as the sum 7o'l - #;", where I is a unit tensor, applying self-evident
zmmetry considerations, and retaining the isotropic term in the rightside of (1.2) in

e equation for i, and the anisotropic term in the right side of (1. 2) in the equation
for =,’, we obtain the following expression for \/=;":
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(1.3)

Making use of (1.8) and carrying out some transformations of (1.1), we obtain
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In accordance with (1.1) and (1.2), the equations for %y’, W’ and v’ are of the form
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dealino with this
is

In dealing with this problem we are interested only in the quasiturbulent motions

problem we are interested only in th quasiturbul
occasioned %y the interaction of the carrier current and gravitational forces on the one
hand, and the fluctuations of the system concentration on the other, and not in the
ordinary turbulent motions of the phases. For this reason we need merely investigate
the particular "natural” solution of system (1.4), (1.5) which is determined by the pre=~
sence of the random functions Q-and F in the right sides of the equations.

Let us compare the distinct terms in the right side of Eq.(1.4). The last term is cle-
arly of the same order as the quantity t~1 Q(®), i.e. in the limiting case T — 0 it is
considerably larger than the first two terms (We assume that the mean-square values of
the random functions Q, F, are of the same order in T). From this we infer that in
our "Markovian" approximation we need only take account of the terms containing the
function Q(P), neglecting the terms containing F and Q'®). It is clear, moreover, that

(P) describes precisely that statistical noise (white with respect to time) which was
inroduced in [%?]on the basis of intuitive physical considerations,

Let us introduce the notions of random processes in the form of Fourier-Stieltjes sto-
chastic integrals, We then obtain fiom (1.4) the following equation for the random
measure dZ, of the process g’ :

dZ, = (ie* +byo by dC, b, = Wk (1.6)

Here the quantity dC represents the random measure of the process which is Marko-
vian with respect to time, We note that (1. 6) coincides with the analogous equation of
{2] as the phase density ratio % approaches zero.

Again neglecting the quantities 5(8)' F) and F(®), we obtain from (1.5) the follo-

. - ?
wing expressions for the random measutes of the processes ,’, v’ and w':
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These expressions are also equivalent to the expressions of [?]¢ The pulsation of the
dispersion medium is secondary in the sense that its appearance is itself due to the
necessity of mass conservation in the chaotic particle motions and to the resulting
fluctuations of particle concentrations in the system (see the discussion in.[3]), Itis
also quite simple to write out an expression for the quantity de,,l, which is a conse-
quence of (1. 3).

We note that the same results are readily obtainable for a particle suspension in a
liquid, i.e. when one cannot neglect momentum and viscous energy dissipation in the
dispersion medium, The method of [*lcombined with the ideas employed above also
yields the equations written out in [?] in this case,

Further on we shall carry out several sample computations for one-dimensional
gragiantless steady flow. The dynamic equations of [*]yield the following relations for
such flow:

dn g dn 1—p)g 2 din K

These relations enable us to describe such flows by specifying a single dynamic quantity.
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2. The structure of equilibrium states, According to [*],the spect-
ral density W, » (w0, K} of the random process p can be expressed by means of (1.6) in
terms of the spectral density @, o (K) of this process which describes the simultaneous
correlation functions only. The position of an individual particle in the model under
consideration is defined to within its specific volume. Allowance for this indetermina-
cy by means of the Massignon procedure for smoothing out short~wave spectral details
enabled us [#]to obtain an expression for @, » (k) in @ system of statistically indepen=~
dent particles, As we noted in|?}], it is possible to use some equivalent method rather
than that of Massignon, Specifically, by using the simplest spectrum smoothing proce-
dure based on the familiar ideas of Debye, we arrive in the same way at the relations

[2' } o 1
( l{) & + 2( ; o ‘i‘ b {0} l 52
ip’ P m? o + (blﬁ) b’) ( 1 ) )

oS

3 2
p. o (k) = 7555 (1= 1) ¥ (ho— &)

(2.1)

Here Y (r) is Heaviside's function, P % is the concenwation of the gas suspension in
the dense packing state, and the quantity kg is simply related to the dimension of the
independent statistical unit in the system. In a system of statistically independent par~
ticles the role of this unit is played by the particle with its specific volume, so that

ko = koo = (%3 mpYhat =y}, b =ap~h 2.2)

The hypothesis of statistical independence is not adequate in the §enera1 case (an
approximate criterion of appearance of large~scale perturbations and transition to an
inhomogeneous flow state is formulated in [?]). The existence of correlations between
the behavior of neighboring particles clearly results in this case in an increase of the
independent statistical unit in the stream, so that Ky in (2. 1) turns out to be smaller
than the quantity ko in(2.2). For this reason we shall be considering k, as some

function of the dynamic quantities and physical parameters of the phases.

Roughly speaking, the use of Formula (2. 1) for k¢ < ko corresponds to the notion of
a gas suspension as a system consisting of groups of particles whose behavior within a
single group is completely correlated, even though the groups themselves are statisti~
cally independent. The quantity p,, which is related to kg as b is to *o5in (2.2) then
represents the radius of the volume occupied by such a group and therefore determines
both the scale of long~range interaction in the'system and the scale of the resulting
inhomogeneities. We are referring, of course, to the structural inhomogeneities due to
the statistical protperties of local interactions in the system, and not to the perturbations
which can result from a disruption of the hydrodynamic stability of the stream.

We note that to within constant factors of order unity the same results (2. 1) and (2.2)
can be arrived at by means of a more conventional argument based on equating the
number of harmonics in the Fourier transforms of the random processes to the number of
degrees of freedom of the particles in the volume element under consideration. From
this standpoint the appearance of correlations between particles is equivalent to 2
reduction of the number of degrees of freedom in the system.

It is also possible in theory to use a phenomenological approach analogous to the
well-known Ornstein-Zernike method in the theory of critical fluctuations of dense
gases (e.g. see [*]), i.e. to use some rational functional relation for ®po(#) which
contains one or several empirical parameters, For comparison, we shall later make
use of a spectral density of this type associated with the Gaussian correlation function

Q,, (}) of the process p'» i.e.

d —ko%E? L il e —k
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The parameter k, has the same meaning in (2. 3) as in (2. 1).

Part of the pulsation energy is dissipated as a result of energy wansfer from the pertur-
bations in question to the small-scale "quiverings" of particles within the limis of their
specific volumes, This ransfer occurs by way 0§sdirect and indirect particle collisions{?].

If the flow is inhomogeneous, i.e, if the pulsation scales are small as compared
with the specific-volume radius, then the effect of the small-scale "quiverings" can be
described by intoducing the effective viscosity occasioned by them. Assuming that the
motions occurring within the limits of the specific volumes are agproximately isotro;f:ic
and denoting the aforementioned viscosity by vy, we obtain the following equation for
the energy dissipation due to the small~scale motions:

em = pdav § § (K %0r, i+ 5 bk ¥, ) do di (2.4)

© K
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Relation (2. 4) differs from the expression of [®] in that the former retains the terms
associated with the "compressibility” of the dispersed phase, i.e, in the fact that the
divergence of w" differs ?ram zero. The notion that tge particle pulsations within the
specific volumes are isotropic is in a certain sense analogous to the hypothesis of local
isotropy in turbulence theory and is confirmed by direct observations (e. g. see [?]), We
note, incidentally, that our conclusion concerning the isotropic character of the partial
spectral demsity (@, , (k) is consistent with the well-known results whereby the three -
dimensional correlations of gas density do not depend in the first approximation on the
intensity of the generalized thermodynamic forces [%].

Clearly, the quantity €, must equal the energy dissipation occurring by way of the
small-scale "quiverings” as a result of viscous interaction with the gas, For the latter
quantity we use, as in |°},an expression w hich follows from the theory of Brownian
motion, i.e. g, = 3 pd,H*K,* where K; (p}is a function which corrects for the
effect of boundedness of the specific volume on the viscous interaction force; it is ana-
logous to the fu‘nctionK {p) In(1.1). Generally speaking, K, (p) <= K (p). Equating
our two expressions for €m, we obtain the equation

332K = 1 = (  (BWs, i + 5 ik Fos, ) do dk (2.5)
3

This equation must be used in determining the parameter k, in the expressions for
@, (k) of (2.1) or (2.3).

The above results enable us to express all of the correlation functions which are of
interest as quadratures in @ and k. Actual integration involves difficulties occasioned
by the complex form of the expression for ¥, , (o, k) in(2.1). We shall consider
below just one limiting case in which the integration is simplified considerably, In the
general case our results can be regarded as model results of a sort.

The case of greatest interest is the inhomogeneous flow of a gas suspension which
arises [*] in the range of parameter values where |83 | in (2, 1) is larger than 4% In the
limiting case b;* «& | b, | in the main portion of the space of integration overk we
find from (2. 1) that

vz Wik th
¥, (0K +;W:’E‘f1’ ®, , (k) |bs| ~ Who>>by? (2.6)

The direction of the axis #1 = z is the same ag that of the vector W.
In the opposite limiting case we have

2*'/‘bj‘~lwzkx’®°'° (k)
7 (02 + by?) [(0 + Wha [ 0y)? -+ oW ot 3

¥, o0 k)= {2.7}

imstead of (2. 6).
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. Asymptotic form (2, 6) is associated with an approximate solution of Eq. (2. 5) of the
orm

BzK'/aKl‘Ia
ko =~ 1.30 — 5
°r W3 —p)(d —p/pl”

where we make use of @, (k) from (2. 1).

In carrying out the integration in (2. 5) we took acceunt of only the largest anisotropic
term in the expression for the spectral tensor ¥, wiw, k) of the process w'ana made use
of the relaton

o0

S do . 1, do n
(@ 4 @o?) (0f 4 Waky3) ~ Wik,s W0 T 0gWik?

—0 —00

By using @ o,e(k) from (2.8), we obtain a formula of the same type forkybut with the
numerical coefficient 0, 825 instead of 1. 30. Hence, in the general case the indicated
formula is valid only to within a factor of order unity. Specifically, for a flow descri-
bed by relations (1.8) we have the expressions

ko= CG (p)u_’g = CGy(p) kqs C~1, ke = u('f’gv ug =g/ i
(1—p)" ( 2 de)-l ( K )‘/-

K \?
Gp)= =+t g %) Go(p)=G(p)(;-_—_—p) 2.8

T e(—p/p™
From this we see that basic assumption (2. 6) can be fulfilied either for sufficiently
small P or for? which are quite close to Pe+ In the general case Formula (2. 8) yields
the order of the true value of kg For example, in the opposite asymptotic case (2.7)

we obtain from (2. 5) the following expression for &, :

. - ’ 1—e X
k P~ G v} =
0= CG (p)u™g, G’ (p) (1 —0.80p - 0.28p2 (2 —p) (1 — p)..lll/:
A =1 K
P 2 ,d Ink 1
[p ({ Pe ) (1 —p f dp )-{ K )

It is clear that the values of the function ¢’ (p) are of the same order as the values
of G {p) from (2.8) for almost all P'. We note that G {P)and ¢’ (p)in(2.8) and (2.9)
are weakly dependent on the physical parameters of the phases and on the dynamic va-
riables, 'thls is due to the analogous d%pendence of the function X (p), for which we
can take, for example, K (p) = (1 — p)-", where the parameter’ n. assumes different
values in the various ranges of variation of the dimensionless criteria describing the
motion'{®}.

Relations (2. 8) and (2. 9) are valid for k< koo, when introduction of the viscosity
Vm. and therefore Eq. (2.5), are valid. If the kg in (2. 8) or (2, 9) is larger or equal to
the ko of (2.2), then we must take Ko = ¥ It is clear that disruption of the homogene~
ity of the gas suspension stream is facilitated for intermediate values of g from thein-
terval (0, p,). The flow of any gas suspension characterized by an arbitrarily small &,
from (2.8) becomes homogeneous as p—» 0 and P—> p,, The latter statement is quali~
tatively consistent with the results of numerous experiments on the quasifluidization of
solid particles, In fact, a particle layer is homogeneous near the start of pseudofluidi-
zation or with very large fluxes of the suspendinﬁ gas even if the resulting suspended
particle layer of these same particles is essentially inhomogeneous {°}

The condition of homogeneous flow of a gas suspension can be written as kg = k.
Recalling that 8ky ~ 4, where A is the Archimedes number, we readily obtain this
condition from (2.2) and (2.8) in 2 form similar to that of the approximate homogene~
ity criterion in []. The criterion of the start of an inhomogeneous flow of a given par-
ticle system in a given gas (i.e. for a fixed k,) for an arbitrary concentration p can be

i a;
written as min (kp — ko) < 0
[
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-1
Carrying out some simple wransformations and recalling that min {p~ 7* G) ~1, we
obtain this criterion in the form

F=ut(agjt =1 (2.10)

where F is the dimensionless Froude flow parameter. Inequality (2. 10) coincides in all
particulars with the empirical criterion of disru?tion of homogeneous quasifluidization
established in ('] on the basis of a large body of experimental data.

Expressions (2. 2) and (2. 8) yield the following relation for the size b, of the flow in-
homogeneities:

\~_1_(§£‘_)"'_F.__1-(3“ " Fo u? _ 1
*=C\N?2) TEe=T 2) G Fo=y = 1)

This expression has the same structure as the formula for the diameter of a gas bubble
in a suspended layer obtained in [*] by analyzing the stability of such a bubble, Its
meaning is altogether different, however, In fact, (2.11) describes the size of the in-
homogeneities whose appearance is due to the peculiarities of local interactions in the
system; the formula of [#) ,on the other hand, describes the size of hydrodynamic per-
turbations of a specific type. The coefficient in front of the Froude number Fg in(2,11)
is proportional to Go~! (p) and is usually much smaller than the coefficient in [*], which
varies from 200 to 11,000. This shows that large stable hydrodynamic perturbations can
occur even in relatively homogeneous sreams. This lends added importance to the
study of the stability of gas suspensions considered in the continuous-medium approxi-
mation. The progressive growth of such perturbations at first introduced externa{)ly into
a homogeneous suspended layer was observed,for example, in [*'].

Asymptotic form (2. 6) is associated with the following expressions for the mean-square
pulsations of the velocities of the phases (the corresponding spectral velocities can be
determined from (1. 7)):

s W
(vy'?) = (0g'% = 0.187 (——p—) (1 —_ —P-) T 5%, (0,3 = 24, 4

t—p Pe
3
2 NP\ -.=-~.(_.e_)£
+(1__p) (1 p‘)u. Y (o P~ (242)
2 o P\ Wh .
(w;’)~(wa’>+3.40(i-—p‘)m. 8 = cos (z;71°)

Here the components v’ are taken along the axes z;’ such that z’ = z') is directed
along the vector u. It is clear that the axes z; and x; * are not necessarily coincident.

Specifically, we obtain the following expressions from (2. 12) for the pulsations in
stream (1. 8) with ko from (2. 8):

(ox'%) = (v’ = Va (p) s, 1'% =V (p) u?
(e = (wy'?) = Wy (p) us, :w{’) = Wi (p) u
— P L
N L
=g (1) (o + ) () @19
(2 B

The ratios
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(vz’,’> . <wﬂ,2)
v (v, v (;n'?)

which can be readily determined from (2. 12) and (2. 13), are usually important flow
characteristics. The quantity N, is considerably smaller than unity; the quantity Nv
turns out to be quite close to 0.5 for certain p. Comparison of the theoretical values
of <wun®> and Nv with the experimental data of-['*# indicated Léood agreement des~
pite the clearly approximate character of relations (2, 13). The theoretical values are
also qualitatively consistent with other experimental findings on the pulsations of the
phases in quasifluidized systems.

As p approaches zero or py , the quantity ko from (2.8) is replaced by k from
(2.2), no matter how small the quantity k, in(2.8). The corresponding expressions for
the mean squares of the pulsations are also readily obtainable from (2.12). It can be
shown that condition (2. 6) is fulfilled in the range p ~ pe and condition (2.7) in the
range p ~ 0. As p—> py we have the estimates

0% ~ wt ~1-—p/p, (2.14)

The same method can be used to find expressions for <v; > and <w;’?) corresponding
to asymptotic form (2.7), and also to write out integral expressions for various correla=
tion functions and to carry out the integrations in them for various specific cases.

The tensor of the dispersed-phase pressure introduced in {1} is diagonal in our coordi=
nate system. Neglecting the volume occupied by the particles themselves, we obtain
the equations

' , ,
Py = pda(w1"'>o Pyy = Py = Pds<wa %, Py = 0, isk] (2-15)

These relations correspond to pure quasiturbulent motion [*). In order to allow for the
increasing role of direct interactions between particles with increasing system concen-
tration, we introduced in [%] the notion of a quasigaseous state; the effective normal
stresses and the wansfer coefficients in the dispersed phase in this state were estimated
on the basis of Enskog's results for a dense rigid-sphere gas [14].

In fact, our notions of the direct collisions of gases similar in type to the collisions
of gas molecules are in large measure arbitrary even in the case of concentrated large-
particle suspensions; this was noted, for example in [5,7}, There are, generally speaking,
no grounds to st}ppose that Enskog’s relations describe wansfer processes in a disperse
system with sufficient accuracy. It is equally doubtful whether Boltzmann-type equa-
tions are at all applicable to such systems [2,8]. In the discussion to follow we shall make
allowance for the intrinsic volume of the particles by means of an elementary "geomet-
ric” method already used with gases [14].

The normal stesSes P, in the dispersed phase are equal to the velocities of wansfer
of the momentum density of this ?hase in the i-th directions. The velocity of momen-
tum transfer in the free volume of the particles is clearly equal to the particle pulsation
velocity (w, )t ~w,*. The velocity ¢ of momentum propagation in the particle mat-
erial is approximately equal to the velocity of sound, i.e. it is much larger than wi*.
The time ¢y (Y required for the momentum to travel the distance L in the i-th direction
is given by

, Yo < Vs s L L
h—a s _
tL(t) ~ o * A + ;‘/’ ty, t z—w‘—,- N | PR - (216)

Here O, is the specific volume of a particle in the dense packing state, so that
0 — 0, is the free volume of the gas suspension per particle. Expression (2. 16)
readily yields an expression for the mean velocity of momentum propagation, The
usual procedure [14] can then be used to find an expression for p 1t replace (2. 15),

Py =pdyw, )y, Py = Pyy == pdyw, "D,

werohermes— =3 =()" e
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The effective particle diffusion coefficients in a quasiturbulent state can be expressed
approximately as products of the corresponding velocities and spatial scales of the pulsa
tions, These scales can be estimated in various ways (one of them is described in [2]),
For simplicity, we shall limit ourselves here to the formal representations

Dy, = w2y L, ~w*by, Dy = Dyy ~wy*b, (2.18)

The coefficients of momentum and pulsation energy transfer, t;; and A,y . respecti-
vely, can be expressed in terms of D, ,

By = A = pd,D 0, (2.19)

Here we have made allowance for the practically instantaneous momentum and energy
wransfer in the particle material.
For p— p, we obtain from (2. 14) and (2. 17) the estimates

w,* 1
Pyt —m) [t —n+—r] . r=p

If 1 — v> w* / c,then Py—> const as p—> P«(Y—> 1). However, for p so close to p,
that 1 — 7 <wy*/c we have Pj; - 0. The range of p values adjacent to p, for which the

latter inequality is fulfilled will not be taken into account from now on, We then ob-
tain the following estimates for Dy; and py from (2. 14) and (2.18), (2.719) as p—> py:

Dy~ —1"h-0, Py~ =100, -1

Here we have taken account of the fact that near p, the quantity b, = & from (2. 2).
It is easy to show that the quantities Py and D;; considered as functions of 'p usually
have maxima, and that ‘b and Ay have both maxima and minima, as was already
noted in [2].

8, The energy equations. The level of development of phase pulsations
is determined by the balance existing between the energy expended by the carrier
current and gravitational field on the acceleration of individual particles and aggregates
(packets) consisting of more than one particle, and the dissipation of the pulsation ener~
gy through viscous particle-gas interactions (*).

Neglecting the gas pulsation energy, we obtain from the second and third equations
of (1.5) the following balance equation for the quantities (w,"?) (without summation
over i ):

1 d 2 .ot K rai # K ’
5P <::;; > = pRy <p'wy') +1Bip<"i wi>_1_—‘B_p_p<wl » (3.1
_ BoK 4 dn BK din _
PR—W—T:;“——i—_;:‘;;‘+g+———1_P(1+P dpl()ﬂ' w=0

The first term in the right side of (2. 4) describes the work performed by the averaged
as flux and gravitational forces in the fluctuations of the gas suspension concentration;
e second term represents the work expended by the gas pulsations in the random par-
ticle displacements; the third term represents the dissipation of particle pulsation energy
by way of the viscous forces.
Equations (3. 1) do not contain terms associated with the imreversible pulsation energy
transfer processes (cf. [18]), i.e. terms representing increases in the pulsation energy

*) Having neglected the tensor @, in Egs. (1.1), we neglect the small quantity €m
discussed in detail in Sect. 2.
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due to the dissipation of the kinetic energy of the averaged motion and the divergence
of the Eulsation energy flux due to the uansfer of the latter by the pulsations themselves.
From the familiar principles of irreversible process thermodynamics we obtain the follo-
wingexpression for the latter flux:

Q= —%(1 7967)9: + (m“'” > )95, B =<w'™, £/ (3.2

T

Here eiis the doubled kinetic energy of pulsation of a unit mass of the dispersed
phase in the i-th direction (the “"effective temperature in the i-th direction”); A
is the symmetric tensor of wansfer coefficients which coincides with the tensor A°of
(2.19) in the steady ("equilibrium") state (all quantities referring to the equilibrium
state will henceforth be accompanied by the degree symbol): m(!. iare the cross co-
efficient tensors symmetric jn_i, J. For simplicity, we shall ignore all cross effects
from now on (by setting(mt- ) = 0).

The increase in pulsation energy due to the dissipation of the energy of averaged
motion depends on the derivatives of the dynamic quantities with respect to the coor-
dinates. The corresponding tetm must therefore be omitted in our gradientless approx-
imation (see the discussion in [*] for the case of a single-phase fluid).

Moreover, a system in a nonequilibrium state can be characterized by exchanges in
pulsation energy among the motions in various directions, The characteristic time of
such exchanges is clearly T =<¥p In our asymptotic case ¢ >>t this exchange must be
neglected, since we are considering states which are “relaxed” in the pertinent sense.

. . . . 7 .

From (1.4) we can readily obtain the corresponding equation for {p ‘2 from which

we see that the condition whereby {p '3y is bounded throughout the entire space implies

that<p 2y = ¢p‘?)® = const. Hence, recalling what we said in Sect. 1 concerning
the secondary character of the gas pulsations, we can write the estimates
pR'(p'w;) -|-pm°(v,'w,'> ~ 01 (3.3)

The proportionality coefficient can be expressed in self-evident fashion in terms of
the equilibrium temperature 6 ‘°‘ on the basis of the condition whereby GL becomes 9i°
in the equilibrium state, This way we obtain from (3. 1) ~ (3. 3) the following equations
for the temperatures 0,:

(gr+wa)ti=se(h )0+ 20 VE(VEF—VE)  (34)

In order to determine these equations (as well as the dynamic equations of '[lll) com-
pletely, we must establish the dependence of the tensors’ A and g on 8,. To this end

we note that J ~ m,B, in (2. 5); here m, are certain functions of ko , of the dyna-
mic quantities, and of the physical parameters of the system phases. The expression for
ko in terms of the temperatures ; in a nonequilibrium state is therefore of the same
form as the expression for /,° in terms of 9‘° in the equilibrium state. Expressions
(2.18) and (2. 19) further imply that Ay~ B8:3%,72(6y) (since Wy ~ 0,2) and an
analogous expression for Ky, We can therefore write

_ of 83 \'r ko° (6;°) _ of 05\ ko® (84°)
Ay =hy (-g;o') T Pat = By (Ff) —,:;r(@‘—)— (3.5)

which defines the required tensors, The dependence of the normal stresses on the tem-
. sial. P —_ p -] (e /e o)
perature is wrivial: we have 1" 11 J9)
For example, for asymptotic case (2.6) we obtain successively

ko ke (S, st () M=t = b (i) (5) " 3.6)
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and similar expressions for p,,.

We emphasize that the use of Eq. (2. 5) to describe nonequilibrium states is equiva-
lent to assuming that equilibrium for the small-scale "quiverings" is established much
sooner than for the large-scale pulsations, The validity of this assumption fdr steady
flows of gas suspensions is self~-evident.

The equations for the pulsation energy (8. 4) and relations of the type (8. 5), (3.6)
which, in a sense, play the role of "equations of state”, close the system of dynamic
equations of [!). These Equations (3.4) have the same meaning as the heat conduction
equation in single-phase fluid hydrodynamics.

After simple wansformations, the dynamic equations of {!] yield the equation for the
energy of the averaged motion of a gas suspension in the form

] d (pIl — po°
(Gt war) i == 2+ v[eroer—m —2EEE] 6)

Il = (pda)*P, ©° = (pdy) v’

(the notation here is that of [1}).

Adding (3. 7) to the sum of Equations (3.4), we obtain an equation which closes the
ordinary%leat transfer equation [18], Equation (3.7) can also be written in other forms,

Equations (3. 4) are especially interesting because of the fact that, together with the
dynamic equations, they enable us to describe the interaction of a stream with solid
walls and the degeneration of pulsations ("cooling” of a gas suspension) in the neighbor-
hood of a wall, is is extremely important both for the formulation of correct boun=
dary conditions at the walls, and especially for computing the coefficients of heat and
mass transfer to the wall, The same equations enable us to describe, for example, the
rise of chaotic pulsations along the height of the suspended layer, the effect of a gas
distribution grating on the structure of the layer, etc. We note that in accordance with
what we have said above, the presence of walls affects not only the intensity, but also
the scale of the pulsations. This fact explains the growth of inhomogeneities with inc-
reasing distance from the distribution grating noted in many experiments.

BIBLIOGRAPHY
1. Buevich, Iu,A., Statistical mechanics of gas suspensions, Dynamic and
spectral equations. PMM Vol, 32, No.5, 1968,

2. Buevich, ITu.A., Non-Newtonian hydromechanics of disperse systems. PMM
Vol. 32, No.3, 1968.

3. Novikov, E. A., The method of random forces in turbulence theory, ZhETF
Vol.44, No.6, 1963,

4., Prigogine, I., Non-equilibrium Statistical Mechanics. Wiley, New York and
London, 1962.

5. Buevich, Iu,A., On the statistical mechanics of particles suspended in a gas
stream. PMM Vol, 32, No. 1, 1968.

6. Leontovich, M. A, , Statistical Physics, Gostekhizdat, Moscow-Leningrad,
1944,

7. Todes, O.M,, Bondareva, A,K, and Grinbaum, M.B., Moton
and mixing of solid-phase particles in a quasifluidized layer. Khim. Promysh-
lennost, No. 6, 1966,

8., Richardson, J.F., and Zaki, W.N., Sedimentation and fluidization.
Part 1. Trans. Institution Chem, Engineers, London Vol.32, No.1, 1954.

9. Davidson, J.F, and Harrison, D., Fluidised particles, Cambridge
University Press, 1963,

10. Wilhelm, R.H. and Kwauk, M., Fluidisation of solid particles. Chem.
Engineering Progress Vol.44, 1948,

11, Davies, L. and Richardson, J.F., Gas interchange between bubbles
and the continuous phase in a fluidised bed. Trans. Institution Chem. Engineers,
London Vol.44, No.8, 1966.



30 lu. A, Buevich

12, Taganov, I.N,, Malkhasian, L.G. and Romankov, P,G., A
study of the statistical characteristics of a random process of particle motion in
a quasifiuidized layer. Teor. Osnovy Khim, Tekhnol. Vol.1, No.4, 1967,

13. Tatganov, I.N., Galkin, O, A. and Romankov, P.G., Astudy
of the statistical characteristics of particle motion in a polydisperse quasiflui-
dized layer. Teor. Osnovy Khim, Tekhnol. Vol.1, No,&, 1967,

14, Hirschfelder, J.0O., Curtiss, C,F. and Bird, R, B., Molecular
Theory of Gases and Liquids. Wiley, New York and London, 1954,

15, Landau, L.D. and Lifshits, E, M., Mechanics of Continuous Media.
2nd edition. Gostekhteorizdat, Moscow, 1954.

Tranalated by A. Y.

SOME GENERAL PROPERTIES OF THE EQUATIONS
OF VISCOELASTIC INCOMPRESSIBLE FLUID DYNAMICS

PMM Vol. 33, No.1l, 1969, pp. 42-51

I.M. RUTKEVICH
{Moscow)
(Received June 12, 1969)

We consider a system of equations describing the flows of an incompressible viscoelas-
tic medium with a rheological equation of state containing derivatives of the stress
tensor with respect to time, The initial system of equations for two-constant models of
the medium is a quasilinear first-order system, Correct formulation of the problem
under initial conditions requires the imposition of certain reswictions on the system
matrix [!]. These restrictions, which are necessary to ensure the evolutionary charac-
ter of the system, are imposed on the stress tensor in our case, We shall concentrate on
one-dimensional motions for which the requirement of evolutionary character renders
the system hyperbolic. It is then possible to indicate sufficient conditions which ensure
the uniqueness of the continuous solution of the one~dimensional steadystate boundary
value problem,

Hyperbolic systems of equations of viscoelastic fluid dynamics have discontinuous
solutions for certain models (e, g. that of Oldroyd {%]). Discontinuous flows of mater-
ials with memory in which the stresses are functionals of their "strain history” are dis-
cussed in [®]. We shall consider the discontinuities in Oldroyd's model when the differ~-
ential relationship between the stress tensors and soaining rates is given, A necessary
condition for the existence of discontinuities is formulated. The problem of evolution
of a velocity jump in one-dimensional motion is considered,

1, The conditions of evolutionary character, Leta viscoelastic
incompressible fluid move in a plane channel ( <z <8 or in a half-space 'z > (),
We assume that all the parameters of motion except the pressure are functions of the

sin’%l]e space coordinate z and of the time £,
e equations of motion are in this case of the form

Bvx+vz 6vx__ia_ﬂ§____:;_l)x_px=0

Bt Pz p 0z
dvy ooy 10Ty; 1p_p -0 11
SRR e S R -
dw, 10T, , 1 3 _p _,
B p oz +p dz F,

Here Py (t) = — 0p / Ox and P, (t) = —0p/dy can be regarded as given functions.
The last equation of (1. 1) makes use of the incompressibility condition



